A dynamin mutant defines a superconstricted prefission state.

نویسندگان

  • Anna C Sundborger
  • Shunming Fang
  • Jürgen A Heymann
  • Pampa Ray
  • Joshua S Chappie
  • Jenny E Hinshaw
چکیده

Dynamin is a 100 kDa GTPase that organizes into helical assemblies at the base of nascent clathrin-coated vesicles. Formation of these oligomers stimulates the intrinsic GTPase activity of dynamin, which is necessary for efficient membrane fission during endocytosis. Recent evidence suggests that the transition state of dynamin's GTP hydrolysis reaction serves as a key determinant of productive fission. Here, we present the structure of a transition-state-defective dynamin mutant K44A trapped in a prefission state at 12.5 Å resolution. This structure constricts to 3.7 nm, reaching the theoretical limit required for spontaneous membrane fission. Computational docking indicates that the ground-state conformation of the dynamin polymer is sufficient to achieve this superconstricted prefission state and reveals how a two-start helical symmetry promotes the most efficient packing of dynamin tetramers around the membrane neck. These data suggest a model for the assembly and regulation of the minimal dynamin fission machine.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pleckstrin-homology domain of dynamin is dispensable for membrane constriction and fission

Classical dynamins bind the plasma membrane-localized phosphatidylinositol-4,5-bisphosphate using the pleckstrin-homology domain (PHD) and engage in rapid membrane fission during synaptic vesicle recycling. This domain is conspicuously absent among extant bacterial and mitochondrial dynamins, however, where loop regions manage membrane recruitment. Inspired by the core design of bacterial and m...

متن کامل

The steady state distribution of humTGN46 is not significantly altered in cells defective in clathrin-mediated endocytosis.

It has been shown previously that whilst the rat type I integral membrane protein TGN38 (ratTGN38) is predominantly localised to the trans-Golgi network this protein does reach the cell surface from where it is internalised and delivered back to the trans-Golgi network. This protein thus provides a suitable tool for the investigation of trafficking pathways between the trans-Golgi network and t...

متن کامل

Induction of mutant dynamin specifically blocks endocytic coated vesicle formation

Dynamin is the mammalian homologue to the Drosophila shibire gene product. Mutations in this 100-kD GTPase cause a pleiotropic defect in endocytosis. To further investigate its role, we generated stable HeLa cell lines expressing either wild-type dynamin or a mutant defective in GTP binding and hydrolysis driven by a tightly controlled, tetracycline-inducible promoter. Overexpression of wild-ty...

متن کامل

A Human Dynamin-related Protein Controls the Distribution of Mitochondria

Mitochondria exist as a dynamic tubular network with projections that move, break, and reseal in response to local environmental changes. We present evidence that a human dynamin-related protein (Drp1) is specifically required to establish this morphology. Drp1 is a GTPase with a domain structure similar to that of other dynamin family members. To identify the function of Drp1, we transiently t...

متن کامل

Effects of mutant rat dynamin on endocytosis

Dynamin is a 100-kD microtubule-activated GTPase. Recent evidence has revealed a high degree of sequence homology with the product of the Drosophila gene shibire, mutations in which block the recycling of synaptic vesicles and, more generally, the formation of coated and non-coated vesicles at the plasma membrane. We have now transfected cultured mammalian COS-7 cells with both wild-type and mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2014